2,255 research outputs found

    Measuring concept similarities in multimedia ontologies: analysis and evaluations

    Get PDF
    The recent development of large-scale multimedia concept ontologies has provided a new momentum for research in the semantic analysis of multimedia repositories. Different methods for generic concept detection have been extensively studied, but the question of how to exploit the structure of a multimedia ontology and existing inter-concept relations has not received similar attention. In this paper, we present a clustering-based method for modeling semantic concepts on low-level feature spaces and study the evaluation of the quality of such models with entropy-based methods. We cover a variety of methods for assessing the similarity of different concepts in a multimedia ontology. We study three ontologies and apply the proposed techniques in experiments involving the visual and semantic similarities, manual annotation of video, and concept detection. The results show that modeling inter-concept relations can provide a promising resource for many different application areas in semantic multimedia processing

    Ternary nucleation of H_2SO_4, NH_3 and H_2O

    Get PDF
    A classical theory of the ternary homogeneous nucleation of sulfuric acid—ammonia—water is presented. For NH3 mixing ratios exceeding 1 ppt, the presence of ammonia enhances the binary (sulfuric acid—water) nucleation rate by several orders of magnitude. However, the limiting component for ternary nucleation—as for binary nucleation—is sulfuric acid. The sulfuric acid concentration needed for significant ternary nucleation is several orders of magnitude below that required in binary case

    Cluster activation theory as an explanation of the linear dependence between formation rate of 3nm particles and sulphuric acid concentration

    Get PDF
    International audienceAccording to atmospheric observations new particle formation seems to be a function of sulphuric acid concentration to the power from one to two. The nucleation theorem then predicts that the critical cluster contains one to two sulphuric acid molecules. However, existing nucleation theories predicts that the power is more (or equal) than 2. Here we present an activation theory, which can explain the observed slope. In cluster activation the clusters containing one sulphuric acid molecule will activate for further growth due to heterogeneous nucleation, heterogeneous chemical reactions including polymerization or activation of soluble clusters. In the activation process organic vapours are typically needed as condensing agents

    Why formation rate of 3 nm particles depends linearly on sulphuric acid concentration?

    No full text
    International audienceAccording to atmospheric observations new particle formation seems to be a function of sulphuric acid concentration to the power from one to two. The nucleation theorem then predicts that the critical cluster contains one to two sulphuric acid molecules. However, existing nucleation theories predicts that the power is more (or equal) than 2. Here we present an activation theory, which can explain the observed slope. In cluster activation the clusters containing one sulphuric acid molecule will activate for further growth due to heterogeneous nucleation, heterogeneous chemical reactions including polymerization or activation of soluble clusters. In the activation process organic vapours are typically needed as condensing agents

    Manipulation primitives: A paradigm for abstraction and execution of grasping and manipulation tasks

    Get PDF
    Sensor-based reactive and hybrid approaches have proven a promising line of study to address imperfect knowledge in grasping and manipulation. However the reactive approaches are usually tightly coupled to a particular embodiment making transfer of knowledge difficult. This paper proposes a paradigm for modeling and execution of reactive manipulation actions, which makes knowledge transfer to different embodiments possible while retaining the reactive capabilities of the embodiments. The proposed approach extends the idea of control primitives coordinated by a state machine by introducing an embodiment independent layer of abstraction. Abstract manipulation primitives constitute a vocabulary of atomic, embodiment independent actions, which can be coordinated using state machines to describe complex actions. To obtain embodiment specific models, the abstract state machines are automatically translated to embodiment specific models, such that full capabilities of each platform can be utilized. The strength of the manipulation primitives paradigm is demonstrated by developing a set of corresponding embodiment specific primitives for object transport, including a complex reactive grasping primitive. The robustness of the approach is experimentally studied in emptying of a box filled with several unknown objects. The embodiment independence is studied by performing a manipulation task on two different platforms using the same abstract description

    On the hygroscopic growth of ammoniated sulfate particles of non-stoichiometric composition

    Get PDF
    International audienceThe hygroscopic growth of ammoniated sulfate particles was studied by measurements and model calculations for particles with varying ammonium-to-sulfate ratio. In the measurements, the ammonium-to-sulfate ratio was adjusted by using mixtures of ammonium sulfate and ammonium bisulfate in generating the solid particles. The hygroscopic growth was measured using a tandem differential mobility analyzer. The measurements were simulated using a thermodynamical equilibrium model. The calculations indicated that the solid phases in particle with ammonium-to-sulfate ratio between 1.5?2, were ammonium sulfate and letovicite. Both in the calculations and in the experiments the hygroscopic growth was initiated at relative humidities less than the theoretical deliquescence relative humidity of these particles. This indicates that the particles were multi-phase particles including solids and liquids. The equilibrium model yielded a satisfactory prediction of the hygroscopic growth of particles generated from a solution with 1:1 mass ratio between dissolved ammonium sulfate and ammonium bisulfate. However, for particles with 3:1 and 10:1 mass ratios, the model predictions overestimated the growth at relative humidities between about 60% and the point of complete deliquescence (close to 80% RH). In contrast, a model, in which letovicite was allowed to dissolve only after complete dissolution of ammonium sulfate, reproduced the observations well. This indicates that the dry particles had a letovicite core surrounded by an ammonium sulfate shell

    A method for detecting the presence of organic fraction in nucleation mode sized particles

    Get PDF
    New particle formation and growth has a very important role in many climate processes. However, the overall knowlegde of the chemical composition of atmospheric nucleation mode (particle diameter, d<20 nm) and the lower end of Aitken mode particles (d&#x2264;50 nm) is still insufficient. In this work, we have applied the UFO-TDMA (ultrafine organic tandem differential mobility analyzer) method to shed light on the presence of an organic fraction in the nucleation mode size class in different atmospheric environments. The basic principle of the organic fraction detection is based on our laboratory UFO-TDMA measurements with organic and inorganic compounds. Our laboratory measurements indicate that the usefulness of the UFO-TDMA in the field experiments would arise especially from the fact that atmospherically the most relevant inorganic compounds do not grow in subsaturated ethanol vapor, when particle size is 10 nm in diameter and saturation ratio is about 86% or below it. Furthermore, internally mixed particles composed of ammonium bisulfate and sulfuric acid with sulfuric acid mass fraction &#x2264;33% show no growth at 85% saturation ratio. In contrast, 10 nm particles composed of various oxidized organic compounds of atmospheric relevance are able to grow in those conditions. These discoveries indicate that it is possible to detect the presence of organics in atmospheric nucleation mode sized particles using the UFO-TDMA method. In the future, the UFO-TDMA is expected to be an important aid to describe the composition of atmospheric newly-formed particles
    • …
    corecore